一、基础篇:脚本开发环境搭建(1小时)
1.1 工具选择与配置
1.2 基础操作模拟
autohotkey
SingleInstance Force
SetTitleMatchMode, 2
F1::
WinGetPos, X, Y, Width, Height, 热血江湖
ControlClick, x500 y300, 热血江湖,, LEFT, 1, NA ; 强化按钮坐标校准
Sleep, 1500
PixelSearch, Px, Py, 0, 0, A_ScreenWidth, A_ScreenHeight, 0x00FF00, 3, Fast
if ErrorLevel = 0
ControlClick, x%Px% y%Py%, 热血江湖
Return
二、进阶篇:强化流程自动化(核心逻辑)
2.1 动态状态监测系统
python
def check_enhance_status:
screenshot = pyautogui.screenshot(region=(x1,y1,x2,y2))
opencv_img = cv2.cvtColor(np.array(screenshot), cv2.COLOR_RGB2BGR)
强化成功特征匹配
success_template = cv2.imread('success.png')
res = cv2.matchTemplate(opencv_img, success_template, cv2.TM_CCOEFF_NORMED)
if np.any(res >= 0.9):
return "success
失败状态检测
hsv = cv2.cvtColor(opencv_img, cv2.COLOR_BGR2HSV)
lower_red = np.array([0,150,50])
upper_red = np.array([10,255,255])
mask = cv2.inRange(hsv, lower_red, upper_red)
if cv2.countNonZero(mask) > 100:
return "failed
return "processing
2.2 智能材料管理系统
python
class MaterialManager:
def __init__(self):
self.inventory = {
'强化石': {'pos': (1324, 658), 'count': 30},
'保护符': {'pos': (1420, 720), 'count': 5}
def use_material(self, name):
if self.inventory[name]['count'] > 0:
pyautogui.click(self.inventory[name]['pos'])
self.inventory[name]['count'] -= 1
return True
return False
def auto_refill(self):
if self.inventory['强化石']['count'] < 5:
self._buy_from_store
def _buy_from_store(self):
商城采购逻辑
pass
三、高级篇:反检测与性能优化
3.1 行为模式随机化引擎
python
import random
from datetime import datetime
class AntiDetection:
@staticmethod
def human_delay(min=0.2, max=1.5):
base = random.uniform(min, max)
noise = random.gauss(0, 0.3)
delay = abs(base + noise)
time.sleep(max(0.1, delay))
@staticmethod
def random_trajectory(start, end):
points = []
dx = end[0]
dy = end[1]
steps = random.randint(3,7)
for i in range(steps):
x = start[0] + dxi/steps + random.randint(-5,5)
y = start[1] + dyi/steps + random.randint(-5,5)
points.append((x,y))
return points
3.2 GPU加速图像识别(CUDA优化)
python
import cupy as cp
def gpu_image_match(template, target):
temp_gpu = cp.asarray(template)
target_gpu = cp.asarray(target)
result = cp.match_template(target_gpu, temp_gpu)
peak = cp.unravel_index(cp.argmax(result), result.shape)
return (peak[1], peak[0]), result[peak]
四、实战篇:完整强化流程示例
python
def auto_enhance(goal_level):
mm = MaterialManager
ad = AntiDetection
current_level = detect_current_level
while current_level < goal_level:
mm.auto_refill
选择装备
ad.human_delay
click_equipment
材料使用
if current_level >= 5:
mm.use_material('保护符')
开始强化
click_enhance_button
状态监控
timeout = time.time + 30
while time.time < timeout:
status = check_enhance_status
if status == "success":
current_level +=1
break
elif status == "failed":
handle_failure
break
time.sleep(0.5)
冷却处理
if current_level >= 7:
wait_cooling_time
日志记录
log_result(current_level)
五、调试与优化技巧
1. 使用OpenCV的调试窗口实时查看识别过程
2. 建立错误代码字典快速排查常见问题
3. 实现自动截图保存失败场景功能
4. 网络延迟补偿算法(基于历史延迟动态调整)
注意事项:
1. 本教程仅用于学习自动化技术原理
2. 实际游戏使用可能违反用户协议
3. 建议在单机环境进行技术验证
4. 定期更新图像特征模板(建议每周更新)
进阶学习方向:
1. 强化学习算法在装备强化中的应用
2. 基于LSTM的强化成功率预测模型
3. 分布式多账号管理系统开发
4. 游戏封包协议逆向工程(仅供安全研究)
附:性能测试数据(RTX 4060环境)
资源消耗:CPU<15% / GPU<20%
网友留言(0)